71 research outputs found

    The stellar and sub-stellar IMF of simple and composite populations

    Full text link
    The current knowledge on the stellar IMF is documented. It appears to become top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing metallicity and in increasingly massive early-type galaxies. It declines quite steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars having their own IMF. The most massive star of mass mmax formed in an embedded cluster with stellar mass Mecl correlates strongly with Mecl being a result of gravitation-driven but resource-limited growth and fragmentation induced starvation. There is no convincing evidence whatsoever that massive stars do form in isolation. Various methods of discretising a stellar population are introduced: optimal sampling leads to a mass distribution that perfectly represents the exact form of the desired IMF and the mmax-to-Mecl relation, while random sampling results in statistical variations of the shape of the IMF. The observed mmax-to-Mecl correlation and the small spread of IMF power-law indices together suggest that optimally sampling the IMF may be the more realistic description of star formation than random sampling from a universal IMF with a constant upper mass limit. Composite populations on galaxy scales, which are formed from many pc scale star formation events, need to be described by the integrated galactic IMF. This IGIMF varies systematically from top-light to top-heavy in dependence of galaxy type and star formation rate, with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and Galactic Structure, Vol.5, Springer. This revised version is consistent with the published version and includes additional references and minor additions to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-

    Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization.

    Get PDF
    We have previously demonstrated that Stat3 regulates lysosomal-mediated programmed cell death (LM-PCD) during mouse mammary gland involution in vivo. However, the mechanism that controls the release of lysosomal cathepsins to initiate cell death in this context has not been elucidated. We show here that Stat3 regulates the formation of large lysosomal vacuoles that contain triglyceride. Furthermore, we demonstrate that milk fat globules (MFGs) are toxic to epithelial cells and that, when applied to purified lysosomes, the MFG hydrolysate oleic acid potently induces lysosomal leakiness. Additionally, uptake of secreted MFGs coated in butyrophilin 1A1 is diminished in Stat3-ablated mammary glands and loss of the phagocytosis bridging molecule MFG-E8 results in reduced leakage of cathepsins in vivo. We propose that Stat3 regulates LM-PCD in mouse mammary gland by switching cellular function from secretion to uptake of MFGs. Thereafter, perturbation of lysosomal vesicle membranes by high levels of free fatty acids results in controlled leakage of cathepsins culminating in cell death.This work was supported by a grant from the Medical Research Council programme grant no. MR/J001023/1 (T.J.S. and B. L-L.) and a Cancer Research UK Cambridge Cancer Centre PhD studentship (H.K.R.).This is the accepted manuscript. The final version is available from Nature Publishing at http://www.nature.com/ncb/journal/vaop/ncurrent/full/ncb3043.html

    Regulation of Amyloid Precursor Protein Processing by the Beclin 1 Complex

    Get PDF
    Autophagy is an intracellular degradation pathway that functions in protein and organelle turnover in response to starvation and cellular stress. Autophagy is initiated by the formation of a complex containing Beclin 1 (BECN1) and its binding partner Phosphoinositide-3-kinase, class 3 (PIK3C3). Recently, BECN1 deficiency was shown to enhance the pathology of a mouse model of Alzheimer Disease (AD). However, the mechanism by which BECN1 or autophagy mediate these effects are unknown. Here, we report that the levels of Amyloid precursor protein (APP) and its metabolites can be reduced through autophagy activation, indicating that they are a substrate for autophagy. Furthermore, we find that knockdown of Becn1 in cell culture increases the levels of APP and its metabolites. Accumulation of APP and APP C-terminal fragments (APP-CTF) are accompanied by impaired autophagosomal clearance. Pharmacological inhibition of autophagosomal-lysosomal degradation causes a comparable accumulation of APP and APP-metabolites in autophagosomes. Becn1 reduction in cell culture leads to lower levels of its binding partner Pik3c3 and increased presence of Microtubule-associated protein 1, light chain 3 (LC3). Overexpression of Becn1, on the other hand, reduces cellular APP levels. In line with these observations, we detected less BECN1 and PIK3C3 but more LC3 protein in brains of AD patients. We conclude that BECN1 regulates APP processing and turnover. BECN1 is involved in autophagy initiation and autophagosome clearance. Accordingly, BECN1 deficiency disrupts cellular autophagy and autophagosomal-lysosomal degradation and alters APP metabolism. Together, our findings suggest that autophagy and the BECN1-PIK3C3 complex regulate APP processing and play an important role in AD pathology

    MicroRNAs : An Emerging Player In Autophagy

    Full text link

    Autophagy: Regulation and role in disease

    Full text link

    A synthetic ion transporter that disrupts autophagy and induces apoptosis by perturbing cellular chloride concentrations

    Get PDF
    Perturbations in cellular chloride concentrations can affect cellular pH, autophagy and lead to the onset of apoptosis. With this in mind synthetic ion transporters have been used to disturb cellular ion homeostasis and thereby induce cell death; however, it is not clear whether synthetic ion transporters can also be used to disrupt autophagy. Here we show that squaramide-based ion transporters enhance the transport of chloride anions in liposomal models and promote sodium chloride influx into the cytosol. Liposomal and cellular transport activity of the squaramides is shown to correlate with cell death activity, which is attributed to caspase-dependent apoptosis. One ion transporter was also shown to cause additional changes in the lysosomal pH which leads to impairment of lysosomal enzyme activity and disruption of autophagic processes. This disruption is independent of the initiation of apoptosis by the ion transporter. This study provides the first experimental evidence that synthetic ion transporters can disrupt both autophagy and induce apoptosis

    EXCITATION AND IONIZATION OF LASER-PUMPED Ba VAPOUR

    No full text
    L'excitation et l'ionisation de vapeur dense de Baryum (1019 à 2021 m-3) par irradiation de lumière laser résonnante (λ = 553.5 nm) est décrite. On discute les processus qui transfèrent à l'ionisation l'énergie d'excitation des atomes. On trouve que l'efficacité de l'ionisation dépend de la densité et on en tire la conclusion que des collisions sont le mécanisme prépondérant. Il a été établi que des électrons séminaux sont chauffés dans des collisions super-élastiques avec les atomes excités par laser et que subséquemment l'excitation et l'ionisation - ainsi que la photoionisation des niveaux élevés - mène à la création d'un nombre croissant d'électrons. Le transfert d'énergie aux électrons par collisions super-élastiques prend place à partir non seulement du niveau de résonance pompé par laser, mais aussi des niveaux métastables de Ba qui se trouvent en dessous. Ces niveaux étaient peuplés immédiatement via le niveau de résonance.We describe the excitation and ionization of dense Ba vapour (1019 to 2021 m-3) by resonant (λ = 553.5 nm) laser radiation and discuss the processes responsible for the transfer of energy from the laser-excited atoms into ionization. Ionization was found to be density-dependent and this pointed to collision-dominated ionization mechanisms. It has been established that seed electrons were heated in superelastic collisions with laser-excited atoms, and that subsequent electron-impact excitation and ionization - as well as photoionization of high-lying levels - lead to the creation of more electrons. The observed transfer of the excitation energy to the electrons by superelastic collisions requires contributions not only from the laser-pumped resonance level, but also from the lower-lying metastable Ba levels. These were, in fact, found to be very efficiently populated via the resonance level

    BlocK of Autophagy in Lysosomal Storage Disorders

    No full text
    • …
    corecore